Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393056

RESUMO

In this study, we investigated for the first time the anti-inflammatory and immunomodulatory properties of crude polysaccharide (PSHT) extracted from green marine algae Halimeda tuna. PSHT exhibited anti-oxidant activity in vitro through scavenging 1, 1-diphenyl-2-picryl hydroxyl free radical, reducing Fe3+/ferricyanide complex, and inhibiting nitric oxide. PSHT maintained the erythrocyte membrane integrity and prevented hemolysis. Our results also showed that PSHT exerted a significant anti-edematic effect in vivo by decreasing advanced oxidation protein products and malondialdehyde levels and increasing the superoxide dismutase and glutathione peroxidase activities in rat's paw model and erythrocytes. Interestingly, PSHT increased the viability of murine RAW264.7 macrophages and exerted an anti-inflammatory effect on lipopolysaccharide-stimulated cells by decreasing pro-inflammatory molecule levels, including nitric oxide, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α). Our findings indicate that PSHT could be used as a potential immunomodulatory, anti-inflammatory, anti-hemolytic, and anti-oxidant agent. These results could be explained by the computational findings showing that polysaccharide building blocks bound both cyclooxygenase-2 (COX-2) and TNF-α with acceptable affinities.


Assuntos
Clorófitas , Alga Marinha , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo , Alga Marinha/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Anti-Inflamatórios/farmacologia , Polissacarídeos/farmacologia , Lipopolissacarídeos/farmacologia , Clorófitas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
2.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986542

RESUMO

Gut injury is a severe and unpredictable illness related to the increased cell death of intestinal epithelial cells (IECs). Excessive IEC apoptotic cell death during the pathophysiological state entails chronic inflammatory diseases. This investigation was undertaken to assess the cytoprotective action and underlying mechanisms of polysaccharides from Tunisian red alga, Gelidium spinosum (PSGS), on H2O2-induced toxicity in IEC-6 cells. The cell viability test was initially carried out to screen out convenient concentrations of H2O2 and PSGS. Subsequently, cells were exposed to 40 µM H2O2 over 4 h in the presence or absence of PSGS. Findings revealed that H2O2 caused oxidative stress manifested by over 70% cell mortality, disturbed the antioxidant defense, and increased the apoptotic rate in IEC-6 cells (32% than normal cells). Pretreatment of PSGS restored cell viability, especially when used at 150 µg/mL and normal cell morphology in H2O2-callenged cells. PSGS also equally sustained superoxide dismutase and catalase activities and hindered the apoptosis induced by H2O2. This protection mechanism of PSGS may be associated with its structural composition. The ultraviolet visible spectrum, Fourier-transformed infrared (FT-IR), X-ray diffraction (XRD), and high-performance liquid chromatography (HPLC) demonstrated that PSGS is mainly sulfated polysaccharides. Eventually, this research work provides a deeper insight into the protective functions and enhances the investment of natural resources in handling intestinal diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...